Affiliation:
1. Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Abstract
The void fraction distribution for turbulent bubbly air/water upflows and downflows in a pipe was analyzed using a three-dimensional two-fluid model. A τ − ε (i.e., Reynolds stress) turbulence model was used for the continuous (liquid) phase. The τ − ε transport equations yield all components of the Reynolds stress tensor for the liquid phase momentum equations. The effect of these stresses is to create a lateral pressure gradient that acts on the bubbles and effects their distribution. The lateral lift force on the bubbles has also been modelled. This lift force arises due to the relative motion of the bubble with respect to a nonuniform liquid velocity field. It has been observed experimentally that for upflows the bubbles concentrate near the wall while for downflows they move toward the center of the conduit. The model presented herein predicts these trends.
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献