Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning

Author:

Zhang Ziyang1,Shi Junchuan1,Yu Tianyu1,Santomauro Aaron1,Gordon Ali1,Gou Jihua1,Wu Dazhong1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816

Abstract

Abstract Carbon fiber-reinforced polymer (CFRP) composites have been used extensively in the aerospace and automotive industries due to their high strength-to-weight and stiffness-to-weight ratios. Compared with conventional manufacturing processes for CFRP, additive manufacturing (AM) can facilitate the fabrication of CFRP components with complex structures. While AM offers significant advantages over conventional processes, establishing the structure–property relationships in additively manufactured CFRP remains a challenge because the mechanical properties of additively manufactured CFRP depend on many design parameters. To address this issue, we introduce a data-driven modeling approach that predicts the flexural strength of continuous carbon fiber-reinforced polymers (CCFRP) fabricated by fused deposition modeling (FDM). The predictive model of flexural strength is trained using machine learning and validated on experimental data. The relationship between three structural design factors, including the number of fiber layers, the number of fiber rings as well as polymer infill patterns, and the flexural strength of the CCFRP specimens is quantified.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3