Nonlinear Coupled Torsion/Lateral Vibration and Sommerfeld Behavior in a Double U-Joint Driveshaft

Author:

Yao Wei1,DeSmidt Hans2

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996-2210

Abstract

Abstract Many driveline systems are designed to accommodate angular misalignment by the use of flexible couplings or Universal Joints (U-Joints) which link individual shaft segments. The Sommerfeld effect is a nonlinear phenomenon observed in some rotor systems being driven through a critical speed when there is not enough power to accelerate the rotor through resonance. Previous studies have shown that rotor speed can become captured when transitioning through natural frequencies due to nonlinear interactions between a non-ideal driving input and rotor imbalance. This paper, for the first time, shows that this type of rotor speed capture phenomena can also be induced by driveline misalignment. During rotor spinup under constant motor torque, it is found that misalignment-induced rotor speed capture phenomena can occur as the shaft speed approaches ½ the first elastic torsional natural frequency. Depending on misalignment level and motor torque, the shaft speed will either dwell near this speed and then pass through, or the speed will become trapped. Here, a nonlinear rotordynamics model of a segmented driveshaft connected by two U-joints including effects of angular misalignment and load torque is developed for the study. This analysis also determines the minimum driveline misalignment angle for which the shaft speed capture phenomena will occur for a given motor torque and load torque condition.

Funder

National Science Foundation

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3