The Investigation of Plasma Produced by Intense Nanosecond Laser Ablation in Vacuum Under External Magnetic Field Using a Two-Stage Model

Author:

Tao Sha1,Wu Benxin2,Zhou Yun3,Cheng Gary J.4

Affiliation:

1. Advanced Optowave Corporation, Ronkonkoma, NY 11779

2. Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W. 32nd Street, Engineering 1 Building, Room 207 A, Chicago, IL 60616 e-mail:

3. Electro Scientific Industries, Inc., Fremont, CA 94538

4. School of Industrial Engineering, Purdue University, West Lafayette, IN 47906

Abstract

In this paper a two-stage physics-based model has been applied to study the evolution of plasma produced by high-intensity nanosecond laser ablation in vacuum under external magnetic field. In the early stage (Stage I), the laser-induced plasma generation and its short-term evolution are described through one-dimensional (1D) hydrodynamic equations. An equation of state (EOS) that can cover the density and temperature range in the whole physical domain has been applied to supplement the hydrodynamic equations. In the later stage (Stage II), the plasma long-term evolution is simulated by solving 2D gas dynamic equations. The two-stage model can predict the spatial distributions and temporal evolutions of plasma temperature, density, velocity, and other parameters. The model is used to study and discuss the effects of external magnetic field on the plasma evolution. It provides a useful tool for related fundamental studies and practical applications.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3