An Adaptive Economic Model Predictive Control Approach for Wind Turbines

Author:

Shaltout Mohamed L.1,Ma Zheren2,Chen Dongmei2

Affiliation:

1. Mem. ASME Faculty of Engineering, Mechanical Design and Production Department, Cairo University, Giza 12613, Egypt e-mail:

2. Mem. ASME Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712 e-mail:

Abstract

Motivated by the reduction of overall wind power cost, considerable research effort has been focused on enhancing both efficiency and reliability of wind turbines. Maximizing wind energy capture while mitigating fatigue loads has been one of the main goals for control design. Recent developments in remote wind speed measurement systems (e.g., light detection and ranging (LIDAR)) have paved the way for implementing advanced control algorithms in the wind energy industry. In this paper, an LIDAR-assisted economic model predictive control (MPC) framework with a real-time adaptive approach is presented to achieve the aforementioned goal. First, the formulation of a convex optimal control problem is introduced, with linear dynamics and convex constraints that can be solved globally. Then, an adaptive approach is proposed to reject the effects of model-plant mismatches. The performance of the developed control algorithm is compared to that of a standard wind turbine controller, which is widely used as a benchmark for evaluating new control designs. Simulation results show that the developed controller can reduce the tower fatigue load with minimal impact on energy capture. For model-plant mismatches, the adaptive controller can drive the wind turbine to its optimal operating conditions while satisfying the optimal control objectives.

Funder

"Division of Civil, Mechanical and Manufacturing Innovation"

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference49 articles.

1. 2012 Renewable Energy Data Book,2013

2. 2013 Wind Technologies Market Report,2014

3. 20% Windpower by 2030,2008

4. Control of Wind Turbines: Past, Present, and Future,2009

5. Control of Wind Turbines: Approaches, Challenges, and Recent Developments;Control Syst. IEEE,2011

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3