Affiliation:
1. Department of Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061
2. Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061
Abstract
In Parts 1 and 2, we determined optimal forms of shallow shells with respect to vibration and stability, respectively. In this final part, we consider a given load and find the shell form for which the volume between the base plane and the deflected shell is a maximum. As before, the shell is assumed to be thin, elastic, and axisymmetric, with a given circular boundary that is either clamped or simply supported. The material, surface area, and uniform thickness of the shell are specified. Both uniformly distributed loads and concentrated central loads are treated. In the numerical results, the maximum enclosed volume is on the order of 10 percent higher than that for the corresponding spherical shell.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献