Translational Joints With Clearance in Rigid Multibody Systems

Author:

Flores P.1,Ambrósio J.2,Claro J. C. P.1,Lankarani H. M.3

Affiliation:

1. Departamento de Engenharia Mecânica, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

2. Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

3. Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260-133

Abstract

A computational methodology for dynamic description of rigid multibody systems with translational clearance joints is presented and discussed in this work. Over the past years, extensive work has been done to study the dynamic effect of the revolute joints with clearance in multibody systems, in contrast with the little work devoted to model translational joints with clearance. In a joint with translation clearance, there are many possible ways to set the physical configuration between the slider and guide, namely: (i) no contact between the two elements, (ii) one corner of the slider in contact with the guide surface, (iii) two adjacent slider corners in contact with the guide surface, and (iv) two opposite slider corners in contact with the guide surfaces. The proposed methodology takes into account these four different situations. The conditions for switching from one case to another depend on the system dynamics configuration. The existence of a clearance in a translational joint removes two kinematic constraints from a planar system and introduces two extra degrees of freedom in the system. Thus, a translational clearance joint does not constrain any degree of freedom of the mechanical system but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches the guide surfaces, an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. These forces are evaluated here with continuous contact force law together with a dissipative friction force model. The contact-impact forces are introduced into the system’s equations of motion as external generalized forces. The proposed methodology is applied to a planar multibody mechanical system with a translational clearance joint in order to demonstrate its features.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3