Selective Radiative Preheating of Aluminum in Composite Solid Propellant Combustion

Author:

Brewster M. Q.1,Patel R.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Utah, Salt Lake City, UT 84112

Abstract

A two-phase model has been developed to study aluminum (Al) particle preheating through selective radiation absorption in composite solid propellants. The two phases considered are one strongly absorbing particle (Al) phase and another weakly absorbing matrix (ammonium perchlorate (AP), binder and catalyst particle) phase surrounding the Al phase. Separate energy balance equations for the Al and matrix phases are developed. Both the matrix and the Al phase are assumed to be nonemitting, anisotropically scattering, absorbing media. The parameters identified which strongly influence Al preheating and melting are Al size, mass fraction, burn rate, and level of incident radiant flux. It was found that large Al mass fractions and small Al particle sizes promote lower Al temperatures. The effect of adding submicron iron oxide burn rate catalyst particles on aluminum preheating was also investigated. It was found that the addition of small amounts of catalyst can theoretically reduce Al temperatures significantly by dominating the optical properties. These results should prove useful to propellant formulators in trying to reduce the problem of unwanted Al agglomeration.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal behavior of absorbing and scattering glass media containing molecular water impurity;International Journal of Thermal Sciences;2005-02

2. Effect of laser radiation upon heat and mass transfer in two-component elastic semitransparent layer;International Journal of Heat and Mass Transfer;2004-02

3. Ignition of Composite Solid Propellants: Model Development, Experiments, and Validation;39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit;2003-06-26

4. Theory of Nonsteady Burning and Combustion Stability of Solid Propellants by Flame Models;Nonsteady Burning and Combustion Stability of Solid Propellants;1992-01-01

5. Burning rate correlation with effect of thermal radiation considered;Journal of Propulsion and Power;1991-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3