Affiliation:
1. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015
2. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 e-mail:
Abstract
Considerable effort has been made to model, predict, and mitigate wear as it has significant global impact on the environment, economy, and energy consumption. This work proposes generalized foundation-based wear models and a simulation procedure for single material and multimaterial composites subject to rotary or linear abrasive sliding wear. For the first time, experimental calibration of foundation parameters and asymmetry effects are included. An iterative wear simulation procedure is outlined that considers implicit boundary conditions to better reflect the response of the whole sample and counter-body system compared to existing models. Key features such as surface profile, corresponding contact pressure evolution, and material loss can be predicted. For calibration and validation, both rotary and linear wear tests are conducted on purpose-built tribometers. In particular, an experimental calibration procedure for foundation parameters is developed based on a Levenberg–Marquardt optimization algorithm. This procedure is valid for specific counter-body and wear systems using experimentally measured steady-state worn surface profiles. The calibrated foundation model is validated by a set of rotary wear tests on different bimaterial composite samples. The established efficient and accurate wear simulation framework is well suited for future design and optimization purposes.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献