Experimentally Calibrated Abrasive Sliding Wear Model: Demonstrations for Rotary and Linear Wear Systems

Author:

Jia Xiu1,Grejtak Tomas1,Krick Brandon1,Vermaak Natasha2

Affiliation:

1. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015

2. Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 e-mail:

Abstract

Considerable effort has been made to model, predict, and mitigate wear as it has significant global impact on the environment, economy, and energy consumption. This work proposes generalized foundation-based wear models and a simulation procedure for single material and multimaterial composites subject to rotary or linear abrasive sliding wear. For the first time, experimental calibration of foundation parameters and asymmetry effects are included. An iterative wear simulation procedure is outlined that considers implicit boundary conditions to better reflect the response of the whole sample and counter-body system compared to existing models. Key features such as surface profile, corresponding contact pressure evolution, and material loss can be predicted. For calibration and validation, both rotary and linear wear tests are conducted on purpose-built tribometers. In particular, an experimental calibration procedure for foundation parameters is developed based on a Levenberg–Marquardt optimization algorithm. This procedure is valid for specific counter-body and wear systems using experimentally measured steady-state worn surface profiles. The calibrated foundation model is validated by a set of rotary wear tests on different bimaterial composite samples. The established efficient and accurate wear simulation framework is well suited for future design and optimization purposes.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3