Affiliation:
1. ENDIF Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1-44100 Ferrara, Italy
Abstract
In the paper, neuro-fuzzy systems (NFSs) for gas turbine diagnostics are studied and developed. The same procedure used previously for the setup of neural network (NN) models (Bettocchi, R., Pinelli, M., Spina, P. R., and Venturini, M., 2007, ASME J. Eng. Gas Turbines Power, 129(3), pp. 711–719) was used. In particular, the same database of patterns was used for both training and testing the NFSs. This database was obtained by running a cycle program, calibrated on a 255MW single-shaft gas turbine working in the ENEL combined cycle power plant of La Spezia (Italy). The database contains the variations of the Health Indices (which are the characteristic parameters that are indices of gas turbine health state, such as efficiencies and characteristic flow passage areas of compressor and turbine) and the corresponding variations of the measured quantities with respect to the values in new and clean conditions. The analyses carried out are aimed at the selection of the most appropriate NFS structure for gas turbine diagnostics, in terms of computational time of the NFS training phase, accuracy, and robustness towards measurement uncertainty during simulations. In particular, adaptive neuro-fuzzy inference system (ANFIS) architectures were considered and tested, and their performance was compared to that obtainable by using the NN models. An analysis was also performed in order to identify the most significant ANFIS inputs. The results obtained show that ANFISs are robust with respect to measurement uncertainty, and, in all the cases analyzed, the performance (in terms of accuracy during simulations and time spent for the training phase) proved to be better than that obtainable by multi-input/multioutput (MIMO) and multi-input/single-output (MISO) neural networks trained and tested on the same data.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献