Unsteady Analysis on the Effects of Tip Clearance Height on Hot Streak Migration Across Rotor Blade Tip Clearance

Author:

Liu Zhaofang1,Liu Zhao1,Feng Zhenping2

Affiliation:

1. Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, China

2. Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

Abstract

This paper presents an investigation on the hot streak migration across rotor blade tip clearance in a high pressure gas turbine with different tip clearance heights. The blade geometry is taken from the first stage of GE-E3 turbine engine. Three tip clearances, 1.0%, 1.5%, and 2.5% of the blade span with a flat tip were investigated, respectively, and the uniform and nonuniform inlet temperature profiles were taken as the inlet boundary conditions. A new method for heat transfer coefficient calculation recommended by Maffulli and He has been adopted. By solving the unsteady compressible Reynolds-averaged Navier–Stokes equations, the time dependent solutions were obtained. The results indicate that the large tip clearance intensifies the leakage flow, increases the hot streak migration rate, and aggravates the heat transfer environment on the blade tip. However, the reverse secondary flow dominated by the relative motion of casing is insensitive to the change of tip clearance height. Attributed to the high-speed rotation of rotor blade and the low pressure difference between both sides of blade, a reverse leakage flow zone emerges over blade tip near trailing edge. Because it is possible for heat transfer coefficient distributions to be greatly different from heat flux distributions, it becomes of great concern to combine both of them in consideration of hot streak migration. To eliminate the effects of blade profile variation due to twist along the blade span on the aerothermal performance in tip clearance, the tested rotor (straight) blade and the original rotor (twisted) blade of GE-E3 first stage with the same tip profile are compared in this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3