Mode I and II Interlaminar Fracture in Laminated Composites: A Size Effect Study

Author:

Salviato Marco1,Kirane Kedar2,Bažant Zdeněk P.3,Cusatis Gianluca3

Affiliation:

1. William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195 e-mail:

2. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794 e-mail:

3. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 e-mail:

Abstract

This work investigates the mode I and II interlaminar fracturing behavior of laminated composites and the related size effects. Fracture tests on geometrically scaled double cantilever beam (DCB) and end notch flexure (ENF) specimens were conducted. The results show a significant difference between the mode I and mode II fracturing behaviors. The strength of the DCB specimens scales according to the linear elastic fracture mechanics (LEFM), whereas ENF specimens show a different behavior. For ENF tests, small specimens exhibit a pronounced pseudoductility. In contrast, larger specimens behave in a more brittle way, with the size effect on nominal strength closer to that predicted by LEFM. This transition from quasi-ductile to brittle behavior is associated with the size of the fracture process zone (FPZ), which is not negligible compared with the specimen size. For the size range investigated in this study, the nonlinear effects of the FPZ can lead to an underestimation of the fracture energy by as much as 55%. Both the mode I and II test data can be captured very accurately by the Bažant’s type II size effect law (SEL).

Funder

U.S. Department of Energy

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3