Effect of Series and Parallel Combination of Photovoltaic Thermal Collectors on the Performances of Integrated Active Solar Still

Author:

Tiwari G. N.1,Meraj Md.2,Khan M. E.2,Dwevedi V. K.3

Affiliation:

1. Bag Energy Research Society, Jawahar Nagar (Margupur), Ballia, Chilkhar 221701, Uttar Pradesh, India

2. Department of Mechanical Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi 110025, India

3. Madan Mohan Malviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India

Abstract

Abstract In this article, an analytical expression for hourly yield, electrical energy and overall exergy of self-sustained solar still integrated with series and parallel combination of photovoltaic thermal-compound parabolic concentrator (PVT-CPC) collectors have been derived. The analysis is based on the basic energy balance equation of the proposed active solar distillation system. Based on numerical computations, it has been observed that the yield is maximum for all self-sustained PVT-CPC collectors are connected in series (case (i)). Furthermore, the daily yield and exergy increase with the increase of water depth unlike passive solar still for all collectors connected in series. However, overall exergy decreases with an increase of water depth for all collectors connected in parallel (case (iv)). For numerical simulations, the total numbers of self-sustained PVT-CPC collectors has been considered as constant. Furthermore, an effect of series and parallel combination of PVT-CPC collectors on daily yield, electrical energy, and overall exergy has also been carried out. Following additional conclusions have also been drawn: (i) The daily yield of the proposed active solar still decreases with the increase of packing factor of semi-transparent photovoltaic (PV) module for a given water depth and electrical energy and overall exergy increase with water depth for case (i) as expected due to low operating temperature range at higher water depth in the basin. (ii) The daily yield, electrical energy, and overall exergy increase with the increase of water depth for all combination of series and parallel arrangement of PVT-CPC collectors for a packing factor of 0.22 as per our expectation.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3