An Investigation of Flame Expansion Speed With a Strong Swirl Motion Using High-Speed Visualization

Author:

Joo S. H.1,Chun K. M.2,Shin Y.3,Lee K. C.4

Affiliation:

1. P/T Test and Development Team, Power Train Division, Technical Center, Daewoo Motor Co., Ltd., 199 Cheongcheon-dong, Bupyung-gu, Incheon 403-714, Korea

2. Department of Mechanical Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemoon-gu, Seoul 120-749, Korea

3. Department of Mechanical Engineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Korea

4. Department of Mechanical Engineering, The University of Alabama, 180 Hardaway Hall, Tuscaloosa, AL 35487

Abstract

In this study, a simple linear supposition method is proposed to separate the flame expansion speed and swirl motion of a flame propagating in an engine cylinder. Two series of images of flames propagating in the cylinder with/without swirl motion were taken by a high frame rate digital video camera. A small tube (4 mm ID) was installed inside the intake port to deliver the fuel/air mixture with strong swirl motion into the cylinder. An LDV was employed to measure the swirl motion during the compression stroke. Under the assumption that flame propagates spherically from the each point of the flame front, a diameter of small spherical flames can be calculated from the two consecutive images of the flame without swirl motion in the cylinder. Using the normalized swirl motion of the mixture during the compression stroke and the spherical flame diameters, the flame expansion speed and swirl ratio of combustion propagation in the engine cylinder can be obtained. This simple linear superposition method for separating the flame expansion speed and swirl motion can be utilized to understand the flow characteristics, such as swirl and turbulence, during the combustion process.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3