Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109
2. Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125
Abstract
An experimental study is made on the processes of heat transfer from the surface of a forced oscillating cylinder in a crossflow. A range of oscillation amplitude A/D=0.1,0.2, forced oscillation frequency 0<Stc<1, and Reynolds number (Re=550, 1100, 3500) is covered in water Pr=6. Besides the increase at the natural vortex shedding frequency, large increases in the heat transfer are found at certain superharmonics. By using Digital Particle Image Velocimetry/Thermometry (DPIV/T), the increase in the heat transfer rate is found to correlate inversely with the distance at which vortices roll-up behind the cylinder, i.e., the distance decreases when the heat transfer increases. The cause of the increase is found to be the removal of the stagnant and low heat convecting fluid at the base of the cylinder during the roll-up of the vortices.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献