Forcing of Separation Bubbles by Main Flow Unsteadiness or Pulsed Vortex Generating Jets—A Comparison

Author:

Lyko Christoph1,Dähnert Jerrit1,Peitsch Dieter2

Affiliation:

1. e-mail:

2. e-mail:  Department of Aeronautics and Astronautics, Technical University of Berlin, Marchstr. 12-14, Berlin 10587, Germany

Abstract

Low pressure turbines typically operate in the low Reynolds number regime. Depending on the loading of the blade, they may exhibit detached flow with associated reattachment in the rear part of the suction surface. Additionally, the flow is highly time-dependent due to the sequence of rotating and stationary blade rows. The work presented in this paper covers experimental efforts taken to investigate this type of flow in detail. Typical low pressure turbine flow conditions have been chosen as baseline for the experimental work. A pressure distribution has been created on a flat plate by means of a contoured upper wall in a low speed wind tunnel. The distribution matches the one of the Pak-B airfoil. Unsteadiness is then superimposed in two ways: A specific unsteadiness was created by using a rotating flap (RF) downstream of the test section. This results in almost sinusoidal periodic unsteady flow across the plate, simulating the interaction between stator and rotor of a turbine stage. Furthermore, pulsed blowing by vortex generating jets (VGJ) upstream of the suction peak was used to influence the transition process and development of the separation bubble. Measurements have been performed with hot-wire anemometry. Experimental results are presented to compare both forcing mechanisms. In sinusoidal unsteady main flow, the transition occurs naturally by the breakdown of the shear layer instability, which is affected by periodic changes in the overall Reynolds number and thus pressure gradient. In opposition, active flow control (AFC) by VGJ triggers the transition process by impulse and vorticity injection into the boundary layer, while maintaining a constant Reynolds number. The flow fields are compared using phase averaged data of velocity und turbulence intensity as well as boundary layer parameters, namely shape factor and momentum thickness Reynolds number. Finally, a model to describe the time mean intermittency distribution is refined to fit the data.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control mechanism of vortex-generator jet on turbulent separation in a highly loaded compressor cascade;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-10

2. Time-Resolved Analysis of Film Cooling Effects Under Pulsating Inflow Conditions;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2021-11-13

3. Flow characteristics of two dimensional classical and pulsating jet in crossflow at low Reynolds number;Case Studies in Thermal Engineering;2018-09

4. A Comparison of Classical and Pulsating Jets in Crossflow at Various Strouhal Numbers;Mathematical Problems in Engineering;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3