Water Hammer Simulation in a Steel Pipeline System With a Sudden Cross Section Change

Author:

Malesińska A.1,Kubrak M.1,Rogulski M.1,Puntorieri P.2,Fiamma V.2,Barbaro G.2

Affiliation:

1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warszawa 00-661, Poland

2. University of Reggio Calabria, Università degli Studi Mediterranea di Reggio Calabria, Via Graziella Feo di Vito 89122, Italy

Abstract

Abstract Contractions and expansions are common features in various types of pipeline systems. The purpose of this study is to investigate the influence of a sudden cross section change on transient pressure waves. The paper presents laboratory data and numerical calculations of pressure oscillations during the valve-induced water hammer in serially connected steel pipes. Five different variants of experiments were conducted which included recording pressure changes at the downstream end of the pipeline system. The more sections with different diameters there are connected in series, the more complex the transient wave recorded is. Laboratory data indicate a significant influence of individual pipeline sections on the final course of pressure oscillations. Transient equations were solved using the explicit MacCormack scheme. In order to numerically simulate water hammers in pipe series, the improved junction boundary condition was established. It involves assigning two sets of values, which describe flow parameters, to the connection node thus causing it to act as two separate nodes. The numerical model was calibrated with the unsteady friction factor. The derivation of equations that take into account a sudden change in diameter in the connected pipes allowed the reproduction of the wave nature of the water hammer phenomenon, results were satisfactory as compared to experimental data. The numerical model correctly reproduced pressure wave interactions and pressure amplitudes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3