A Computational Technique to Evaluate the Relative Influence of Internal and External Cooling on Overall Effectiveness

Author:

Bryant Carol E.1,Rutledge James L.2

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

2. Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

Abstract

Abstract Gas turbine components are protected via a coolant that travels through internal passageways before being ejected as external film cooling. Modern computational approaches facilitate the simulation of the conjugate heat transfer that takes place within turbine components, allowing the prediction of the actual metal temperature, nondimensionalized as overall effectiveness. Efforts aimed at improving cooling are often focused on either the internal cooling or the film cooling; however, the common coolant flow means that the internal and external cooling schemes are linked and the coolant holes themselves provide another convective path for heat transfer to the coolant. The relative influence of internal cooling, external cooling, and convection through the film cooling holes on overall effectiveness is not well understood. Computational fluid dynamics (CFD) simulations were performed to isolate each cooling mechanism, and thereby determine their relative contributions to overall effectiveness. The conjugate CFD model was a flat plate with five staggered rows of shaped film cooling holes. Unique boundary conditions were used to isolate the cooling mechanisms. The internal surface was modeled with and without heat transfer on the internal face in order to isolate the effects of plenum cooling. Convection through the coolant holes was isolated by making the inside of the film cooling holes adiabatic to evaluate the influence of the internal cooling provided by the cooling holes themselves. Finally, the effect of film cooling was removed through the novel use of an outlet boundary condition at the exit of each hole that allowed the internal coolant flow without external coolant ejection.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3