Multi-Objective Optimization Design of Nonlinear Magnetic Bearing Rotordynamic System

Author:

Zhong Wan1,Palazzolo Alan2,Kang Xiao3

Affiliation:

1. Vibration Control and Electronics Lab, Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

2. James J. Cain Professor Fellow ASME Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

3. Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

Nonlinear vibrations and their control are critical in improving the magnetic bearings system performance and in the more widely spread use of magnetic bearings system. Multiple objective genetic algorithms (MOGAs) simultaneously optimize a vibration control law and geometrical features of a set of nonlinear magnetic bearings supporting a generic flexible, spinning shaft. The objectives include minimization of the actuator mass, minimization of the power loss, and maximization of the external static load capacity of the rotor. Levitation of the spinning rotor and the nonlinear vibration amplitude by rotor unbalance are constraint conditions according to International Organization for Standardization (ISO) specified standards for the control law search. The finite element method (FEM) was applied to determine the temperature distribution and identify the hot spot of the actuator during steady-state operation. Nonlinearities include magnetic flux saturation, and current and voltage limits of power amplifiers. Pareto frontiers were applied to identify and visualize the best-compromised solutions, which give a most compact design with minimum power loss whose vibration amplitudes satisfy ISO standards.

Publisher

ASME International

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3