Some Effects of Non-Axisymmetric End Wall Profiling on Axial Flow Compressor Aerodynamics: Part I—Linear Cascade Investigation

Author:

Harvey N. W.1

Affiliation:

1. Rolls-Royce plc, Derby, UK

Abstract

Non-axisymmetric end wall profiling is now a well established design methodology in axial flow turbines, used principally to improve their aerodynamic efficiency by reducing secondary loss. However, profiled end walls (PEWs) have yet to find an in-service application in a gas turbine compressor. This two-part paper presents the results of a number of studies, both experimental and computational, into the potential aerodynamic benefits of applying PEWs in axial flow compressors. The first paper reports research carried out using a linear compressor stator cascade at Cambridge University. The datum geometry was based on previous research with this cascade. The PEW geometry was generated using a method that had been proven to reduce secondary loss in turbine blade rows. Data was taken on the datum and PEW geometries in the form of exit area traverses and surface static pressure measurements. The experiments demonstrated improvements to the exit flow field in terms of local reductions in the loss and under-turning in the secondary flow region due to the PEW. It was found that the original design method had over estimated the benefits of the PEW. The datum and PEW geometries were further analysed using state-of-the-art CFD (Computational Fluid Dynamics). The CFD is shown to achieve very good agreement with measurement at the design condition and a reasonable, qualitative match at off-design. It is concluded that the PEW geometry, though not optimum, effected predictable changes to the compressor stator flow field. The mechanisms for these effects are discussed and conclusions are drawn for taking the work forward. In particular, a mechanism is identified whereby the PEW enhances the cross-flow on the end wall and the subsequent radial migration of the secondary flow adjacent to the aerofoil suction surface. The control of corner stall by means of this flow mechanism is highlighted as a possible area for further investigation. This is followed up in the second paper, which presents a computational study of applying PEWs to a multi-stage HP compressor.

Publisher

ASMEDC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3