Identification and Correction of Rotor Instability in an Oil-Free Gas Turbine

Author:

Lubell Daniel R.1,Wade Jonathan L.1,Chauhan Navjot S.1,Nourse John G.1

Affiliation:

1. Capstone Turbine Corporation, Chatsworth, CA

Abstract

The direction of advanced gas turbines and other turbomachinery has been towards oil-free designs, enabled by the significant improvements of high temperature foil bearings. The advantages of oil-free gas turbines have been studied and shown to be realistic. However, the oil-free technology is still at an early stage in its development relative to conventional oil lubricated turbomachinery systems which have been studied and manufactured for about 100 years, and the bearings even longer. Oil-free gas turbines are most successful as a system design initiated with oil-free bearings. Making these successful designs requires knowledge of the strengths and weaknesses of integrating oil-free bearings. A common example is foil bearings, the type typically considered for oil-free gas turbines. These bearings are lower in damping than their oil lubricated counterparts. Therefore special considerations are made by the experienced oil-free gas turbine designer early in the design process. Knowledge of the opportunities for instability that are not as common in conventional turbomachinery provides value to the final design. This paper presents the identification and correction of rotor instability in an oil-free microturbine of a 65 kW system. The manufacturer put significant effort into identifying the root cause of the seemingly random occurrences of rotor instability, in order to improve yield for acceptance tests. Through the application of conventional rotordynamics theory and techniques, combined with 3-D imaging of complex cast parts, the root cause was identified as an Alford’s-type force at the turbine driven by critical machined and cast features of the turbine wheel that would not have been important in a conventional oil lubricated turbomachine. A successful corrective process has been put in place, providing final confirmation of the root cause.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3