Affiliation:
1. University of Duisburg – Essen, Duisburg, Germany
Abstract
The composition of sewage water with partially large portions of fibers and solids requires a special pump design, in order to avoid operational disturbances by clogging. In most applications for sewage water transport, single-stage pumps with single-blade impellers are used. With this special impeller geometry largest flow channels can be realized. So fibers and solids up to an appropriate size can be transported by the pump. This minimum impeller blade number however brings disadvantages for pump operation. The development of a pressure and a suction surface of the blade gives an asymmetric pressure distribution at the perimeter of the rotor outlet and a periodically unsteady flow field arises. In a numerical approach the time accurate flow in a single-blade centrifugal pump has been calculated by solving the 3-dimensional time dependent Reynolds averaged Navier-Stokes equations (URANS) in a wide range of pump operation. The investigation of the flow included all details between suction flange and pressure flange of the pump. The numerical results show a strong dependence from impeller position for all flow parameters. For the investigated operating points strong vortices have been obtained at particular impeller positions. Experimental results have been used to verify the numerical results of time dependent flow in the single-blade pump. The computed flow field has been compared to results which were obtained from optical measurements of flow velocities by Particle Image Velocimetry at different impeller positions. A very good qualitative agreement between measurements and calculations has been obtained for all investigated operating points.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献