Feasibility of an Active Control Scheme for Above Knee Prostheses

Author:

Grimes D. L.1,Flowers W. C.1,Donath M.1

Affiliation:

1. Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Mass.

Abstract

The level walking process for an above knee (A/K) amputee with a conventional prosthesis greatly compromises the amputee’s mobility. The fact that conventional prostheses lock in hyperextension during the stance phase, in contrast to the extend-flexextend pattern during stance for the natural limb, has been suggested as a source of the amputee’s uncosmetic gait and high energy expenditure. While the lock in hyperextension during stance provides stability to prevent buckling, it requires the person to vault over the prosthetic limb. This vaulting during level walking may cause higher vertical displacements of the body center of gravity (c.g.) and accompanying higher energy requirements for the amputee. This investigation employs an amputee-interactive prosthesis simulator system to evaluate the viability of controlling the prosthetic knee joint to follow a normal knee position pattern. In order to insure that the amputee-interactive prosthesis simulator system does not introduce gait anomalies, the system was controlled to simulate a conventional prosthesis. This showed that the simulator system has no undesired side effects since data from walking trials with the simulator system in “conventional prosthesis mode” are very similar to data from conventional prostheses in the literature. Then, an active position control scheme which controls the prosthetic knee joint to follow a normal knee position pattern was tested by two young, active amputees in level walking trials. The subjects experienced very little difficulty in walking with the active control scheme and preferred the simulator with the active control scheme to their conventional prostheses. Measured knee power requirements for the scheme indicate that this type of control is feasible without external power sources. However, measurements of the vertical displacement of the body c.g. show little difference between gait with the active control scheme and gait with a conventional prosthesis. It appears that the increased energy requirements for A/K amputees are not due in total to the lack of the extend-flex-extend position profile at the prosthetic knee joint.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Individualizing Continuous Joint Kinematics Using Gaussian Process Enhanced Fourier Series;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

2. Robust and compliance control for robotic knee prosthesis using admittance model and sliding-mode controller;Transactions of the Institute of Measurement and Control;2022-04-18

3. Intelligent Knee Prostheses: A Systematic Review of Control Strategies;Journal of Bionic Engineering;2022-03-28

4. Application of control strategies and machine learning techniques in prosthetic knee: a systematic review;Advances in Computational Intelligence;2022-02

5. Prosthetics and Innovation;Blast Injury Science and Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3