Nonclassically Damped Dynamic Systems: An Iterative Approach

Author:

Udwadia Firdaus E.1,Esfandiari Ramin S.2

Affiliation:

1. University of Southern California, Los Angeles, CA 90089-1114

2. California State University, Long Beach, CA 90840-5005

Abstract

This paper presents a new, computationally efficient, iterative technique for determining the dynamic response of nonclassically damped, linear systems. Such systems often arise in structural and mechanical engineering applications. The technique proposed in this paper is heuristically motivated and iteratively obtains the solution of a coupled set of second-order differential equations in terms of the solution to an uncoupled set. Rigorous results regarding sufficient conditions for the convergence of the iterative technique have been provided. These conditions encompass a broad variety of situations which are commonly met in structural dynamics, thereby making the proposed iterative scheme widely applicable. The method also provides new physical insights concerning the decoupling procedure and shows why previous approximate approaches for uncoupling nonclassically damped systems have led to large inaccuracies. Numerical examples are presented to indicate that, even under perhaps the least ideal conditions, the technique converges rapidly to provide the exact time histories of response.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3