Modeling of Stiffness and Strength of Bone at Nanoscale

Author:

Abueidda Diab W.1,Sabet Fereshteh A.1,Jasiuk Iwona M.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Mechanical Engineering Building, 1206 W Green Street, Urbana, IL 61801 e-mail:

Abstract

Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen–mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

Funder

Division of Materials Research

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference70 articles.

1. Mechanical Properties and the Hierarchical Structure of Bone;Med. Eng. Phys.,1998

2. Modelling of Bone Fracture and Strength at Different Length Scales: A Review;Interface Focus,2016

3. Bone Structure—From Angstroms to Microns;Faseb J.,1992

4. Bone Structure and Formation: A New Perspective;Mater. Sci. Eng. R: Rep.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3