Tribological Behavior of Polytetrafluoroethylene: Effect of Sliding Motion

Author:

Shibo Wang1,Niu Chengchao1,Teng Bing1

Affiliation:

1. School of Mechanic and Electronic Engineering, China University of Mining and Technology, Xu Zhou 221116, China e-mail:

Abstract

Wear characteristics were influenced by the parameters of wear-testing apparatus including configuration of contact surface and form of the relative motion. The tribological behavior of polytetrafluoroethylene (PTFE) disk against AISI1045 steel pin under unidirectionally rotating, linearly reciprocating, and torsional motion was studied. The friction coefficients under unidirectional rotating, linearly reciprocating and torsional motion were 0.1, 0.118 and 0.12, respectively. The highest wear mass loss of PTFE was obtained under linearly reciprocating. The wear mass loss under torsional motion was lowest. The wear mechanism of PTFE under unidirectional rotating, linearly reciprocating, and torsional motion was slight plowing, serious abrasive wear, and adhesive wear, respectively. Through finite element analysis, a higher normal stress induced by the edge effect of steel pin promoted a higher shear stress in PTFE disk. The plastic ratcheting mechanism occurred on the contact edge when the steel pin entered and exited the contact zone, as led to higher wear mass loss under linearly reciprocating and unidirectional rotation. The plastic ratcheting mechanism did not occur under torsional motion. Different transfer films with various topographies were formed on the steel pins under the three motions.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

1. Effect of Reciprocating and Unidirectional Sliding Motion on the Friction and Wear of Copper on Steel;Wear,2001

2. Dry Sliding Friction and Wear Response of WC–Co Hard Metal Pairs in Linearly Reciprocating and Rotating Contact;Sustainable Constr. Des.,2011

3. Scuffing Behavior of Gray Iron and 1080 Steel in Reciprocating and Rotational Sliding;Wear,2011

4. Tribological Behavior of PEEK Components With Compositionally Graded PEEK/PTFE Surfaces;Wear,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3