An Optimum Design of the Transverse Pressure Contour Slider for Enhanced Flying Characteristics

Author:

Yoon Sang-Joon1,Choi Dong-Hoon1

Affiliation:

1. Department of Mechanical Design & Production Engineering, Hanyang University, Seoul, Korea 133-791

Abstract

This paper proposes a design method for determining the configuration of a TPC slider by using an optimization technique in order to meet the desired flying characteristics over the entire recording band. The desired flying characteristics considered in this study are to minimize the variation in flying height from a target value, to maintain the pitch angle as large as possible, to keep the roll angle as small as possible, and to keep the outside rail to fly lower than the inside rail. The design variables selected are left-side step width, pad width, right-side step width, side step depth, front taper height, and pivot offset in the transverse direction of the slider. The sequential quadratic programming (SQP) method in Automated Design Synthesis (ADS) is used to efficiently find the optimum design variables which simultaneously meet all the desired flying characteristics. To validate the suggested design method, a computer program is developed and applied to the configuration design of two TPC slider models positioned by a rotary actuator. The optimum configurations of each slider model are automatically obtained for three different target flying heights with the same predefined skew angle range without any difficulty. This shows the effectiveness of the proposed design method in comparison with the conventional one based on the parametric study.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3