Affiliation:
1. Virginia Polytechnic Institute and State University Kevin T. Crofton Department of Aerospace and Ocean Engineering, , Blacksburg, VA 24061
Abstract
Abstract
Filtered Rayleigh scattering (FRS) is a non-intrusive, laser-based optical technique for measuring three-component velocity, static temperature, and static density with high spatial resolution and low uncertainty. FRS can be used to derive total values as well as turbomachinery efficiencies. The Virginia Tech team has been developing this seedless technique for simultaneous planar (or line) measurements to overcome the limitations associated with seed-based laser measurement techniques such as laser Doppler velocimetry (LDV), particle image velocimetry (PIV), and Doppler global velocimetry (DGV) as well as limitations with physical probe rakes such as blockage and wake production. This technique is especially attractive in flow cases or environments where the aforementioned seed-based laser measurement techniques are limited or not possible. A combination of specially designed boundary layer total pressure probe rake measurements, FRS optical rake measurements, and computational fluid dynamics (CFD) results in the inlet of a Honeywell TFE731-2 turbofan are presented. Results show that all three techniques (FRS, probe, and CFD) match within approximately 2% root-mean-square error (RMSE). Inlet efficiency was derived and found to be within 2.3% difference for all three techniques.