Inertial Parameter Identification for Closed-Loop Mechanisms: Adaptation of Linear Regression for Coordinate Partitioning

Author:

Pyrhönen Lauri1ORCID,Willems Thijs23,Mikkola Aki1,Naets Frank2

Affiliation:

1. Laboratory of Machine Design, Department of Mechanical Engineering, LUT University , Lappeenranta 53850, Finland

2. E2E Lab, Flanders Make at KU Leuven, Department of Mechanical Engineering, KU Leuven, Leuven 3001, Belgium

3. KU Leuven

Abstract

Abstract This study investigates the use of linear-regression-based identification in rigid multibody system applications. A multibody system model, originally described with differential-algebraic equations (DAE), is transformed into a set of ordinary differential equations using coordinate partitioning. This allows the identification framework (where the system is described with ordinary differential equations) to be applied to rigid multibody systems described with nonminimal coordinates. The methodology is demonstrated via numerical and experimental validation on a slider–crank mechanism. The results show that the presented methodology is capable of accurately identifying the system's inertial parameters even with a short motion trajectory used for training. The presented linear-regression-based identification approach opens new opportunities to develop more accurate multibody models. The resulting updated multibody models can be considered especially useful for state-estimation and the control of multibody systems.

Publisher

ASME International

Reference23 articles.

1. Inertia Parameter Identification for Closed-Loop Mechanisms: Adaptation of Linear Regression for Coordinate Partitioning,2023

2. Dynamic Identification of Robots With Power Model,1997

3. A General Method for Estimating Dynamic Parameters of Spatial Mechanisms;Nonlinear Dyn.,1998

4. Inertial Parameter Identification in Robotics: A Survey;Appl. Sci.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3