Explosion Differentiation Using Light Emissions—Nuclear Reactor, Steam, Water Hammer, Hydrogen, Piper Alpha, and Hydro-Volcanic Explosions

Author:

Leishear Robert A.1

Affiliation:

1. NACE Senior Corrosion Technologist, Project Management Professional, Journeyman Sheet Metal Mechanic, Leishear Engineering, LLC Licensed Professional Engineer , 205 Longleaf Court, Aiken, SC 29803

Abstract

Abstract Light emissions during chemical reactions provide insights into various scenarios to better understand explosions and water hammers. For example, hydrogen burning and explosions emit blue light, organic carbon combustion and explosions emit combinations of blue and yellow light, water phase changes emit infrared and less visible white light, and white light explosions ignite when multiple chemical reactions are involved. Since experimental tests to observe infrared light during water hammers have not yet been performed, test data from water boiling tests and volcanoes are compared to larger water hammer and steam explosion incidents. Considering these facts and examining a series of photos and videos from the literature and Internet, determinations are proven with respect to water hammers, steam explosions, Piper Alpha water hammer explosions, and chemical explosions. Such evidence proves that steam explosions are important for water hammer accidents, but chemical explosions explain other explosions that have long been considered to be steam explosions. These other explosions include nuclear power plant explosions, hydro-volcanic explosions, and hydrogen explosions, where some of these explosions are, in fact, related to water hammers. This article is primarily a photographic essay to explain the differences between different types of explosions and water hammers, although combustion and explosion principles are expanded and explained to support this essay.

Publisher

ASME International

Reference37 articles.

1. Spectroscopy and Optical Diagnostics for Gases

2. Water Hammers Exploded Nuclear Power Plants at Fukushima Daiichi;Leishear;ASME J. Nucl. Eng. Radiat. Sci.,2022

3. New Study Finds Gas Stoves Leak When Turned Off;Tucson Arizona

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3