Fracture and Energetic Strength Scaling of Soft, Brittle, and Weakly Nonlinear Elastomers

Author:

Gonzalez Kevin1,Xue Jing1,Chu Andy1,Kirane Kedar1

Affiliation:

1. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794

Abstract

Abstract An investigation is presented into the fracture and energetic strength scaling of soft and brittle polydimethylsiloxane (PDMS)-based elastomers. Mode I tensile fracture tests on pre-cracked specimens of various sizes are carried out with two PDMS elastomers significantly varying in their stiffness, strength, and toughness. The results are interpreted within the existing framework of the energetic type II Bazant size effect law (SEL). The SEL is found to be applicable to the PDMS elastomers despite their nonlinear stress-strain behavior. This is because the nonlinearity is rather weak, making the strain energy approximately proportional to the square of the nominal stress, similar to linear elastic materials. It is found that at the lab scale, the structural strength of both elastomers scales in a self-similar fashion with specimen size and falls on the large size asymptote of the SEL. Then, the strengths of much smaller specimens are numerically predicted using the cohesive crack model. For both elastomers, these strengths are found to fall squarely on the transitional part of the SEL, implying incomplete self-similarity and a transition to quasi-brittle fracturing. This is due to the increased dominance of the fracture process zone whose size is estimated by various methods. It is shown that if this transition is not accounted for, the structural strength can be over-predicted by 140% or even more for smaller sizes. Thus, for the first time, it is shown that soft elastomers, if weakly nonlinear, exhibit conformance to the energetic type II strength scaling laws.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. Characterization of Polydimethylsiloxane (pdms) Properties for Biomedical Micro/Nanosystems;Mata;Biomed. Microdevices.,2005

2. Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering;Johnston;J. Micromech. Microeng.,2014

3. Statistical Size Effect in Quasi-brittle Structures: I. Is Weibull Theory Applicable?;Bazant;J. Engin. Mechanics,1991

4. Energetic-Statistical Size Effect in Quasibrittle Failure At Crack Initiation;Bazant;ACI Mater. J,2000

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3