A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials

Author:

Yang Shengyou1,Sharma Pradeep23

Affiliation:

1. Department of Engineering Mechanics, School of Civil Engineering, Shandong University , Jinan 250061, China

2. Department of Mechanical Engineering, University of Houston , Houston, TX 77204 ; , Houston, TX 77204

3. Department of Physics, University of Houston , Houston, TX 77204 ; , Houston, TX 77204

Abstract

Abstract Soft materials, such as liquids, polymers, foams, gels, colloids, granular materials, and most soft biological materials, play an important role in our daily lives. From a mechanical viewpoint, soft materials can easily achieve large deformations due to their low elastic moduli; meanwhile, surface instabilities, including wrinkles, creases, folds, and ridges, among others, are often observed. In particular, soft dielectrics subject to electrical stimuli can achieve significantly large deformations that are often accompanied by instabilities. While instabilities are often thought to cause failures in the engineering context and carry a negative connotation, they can also be harnessed for various applications such as surface patterning, giant actuation strain, and energy harvesting. In the biological world, instability and bifurcation phenomena often precede important events such as endocytosis, and cell fusion, among others. Stability and bifurcation analysis (especially for soft materials) is challenging and often present a formidable barrier to entry in this important field. A multidisciplinary audience may lack the background in one or more areas that are needed to carry out the requisite modeling or even understand papers in the literature. Furthermore, combining electrostatics together with large deformations brings its own challenges. In this article, we provide a tutorial on the basics of stability and bifurcation analysis in the context of soft electromechanical materials. The aim of the article is to use simple examples and “gently” lead a reader, unfamiliar with either stability analysis or electrostatics of deformable media, to develop the ability to understand the pertinent literature that already exists and position them to embark on state-of-the-art research on this topic.

Publisher

ASME International

Subject

Mechanical Engineering

Reference199 articles.

1. Soft Robotics for Chemists;Angew. Chem.,2011

2. Buckling of Elastomeric Beams Enables Actuation of Soft Machines;Adv. Mater.,2015

3. Design, Fabrication and Control of Soft Robots;Nature,2015

4. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters;Adv. Mater.,2014

5. Dielectric Elastomers: Generator Mode Fundamentals and Applications,2001

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3