Affiliation:
1. Mem. ASME e-mail:
2. Student Mem. ASME Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
3. Industrial and Systems Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong S.A.R., China
Abstract
Product family design (PFD) is a widely adopted strategy for product realization, especially when design requirements are diversified and multi-faceted. Due to ever-changing customer needs and the increasingly complex and integrated product design structure, PFD and its optimization have been concerned more about a rapid and contextual product analysis and variant derivation based on a multi-objective optimization scheme subject to design concerns, which are often cross disciplinary, such as product service, carbon footprint, user experience, esthetics, etc. Existing PFD modeling approaches, which are primarily structured using component attributes and assembly relationships, possess notable limitations in representing complex component and design relationships. Hence, it has restricted comprehensive PFD analysis in an agile and contextual manner. Previously, we have studied and demonstrated the feasibility of using ontology for product family modeling and have suggested a framework of faceted information search and retrieval for product family design. In this paper, several new perspectives towards PFD based on ontology modeling are presented. Firstly, new metrics of ontology-based commonality that better reveal conceptual similarity under various design perspectives are formed. Secondly, faceted concept ranking is proposed as a new ranking approach for ontology-based component search under complex and heterogeneous design requirements. Thirdly, using these ranked results, a platform selection approach that considers a maximum aggregated ranking with a minimal platform modification among various platform choices is researched. From the selected platform and the newly proposed metrics, a modified multi-objective evolutionary algorithm with an embedded feature of configuration incompatibility check is studied and deployed for the optimal selection of components. A case study of PFD using four laptop computer families is reported as our first attempt to showcase how faceted component analysis, selection, and optimization can be accomplished based on the proposed family ontology.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献