Effect of Fuel Nozzle Geometry on Swirling Partially Premixed Methane Flames

Author:

Ahmed Mahmoud M. A.1,Birouk Madjid1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada

Abstract

Abstract This paper presents an experimental study of the effect of fuel nozzle geometry on swirling partially premixed methane flames, where the focus is put on the ensuing flowfield and its role on coherent structures' suppression. The burner consists of a central interchangeable fuel nozzle surrounded by a swirling co-airflow where both discharge into a short mixing tube. The nozzle geometry is classified into two groups, namely, single- and multi-orifice nozzles. The swirling motion of the co-airflow is produced using a radial-type swirl generator with a swirl number of 1.15. The flowfield characteristics and coherent structures are documented using particle image velocimetry (PIV). Flame front dynamics are captured using Mie scattering technique. Quantitative laser sheet (QLS) is used to qualitatively shed light on the mixing characteristics downstream of the mixing tube exit, and laser Doppler velocimetry (LDV) is used to extract the coherent structures' peak frequency from the power spectra. The results revealed that the fuel nozzle geometry significantly affects the mean flowfield, mean, and root-mean-square (RMS) of the flame front location, flame front asymmetry, and coherent structures' amplitude. Higher spread rate and faster decay caused by single-orifice nozzles inside the mixing tube result in divergent flames with higher degree of flame front asymmetry downstream of the mixing tube exit. On the other hand, multi-orifice nozzles mitigate coherent structures, enhance mixing, and hence, promote the most appropriate conditions for coherent structures' suppression.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3