Affiliation:
1. University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:
2. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109
Abstract
This paper presents the local interaction simulation approach (LISA) for efficient modeling of linear and nonlinear ultrasonic guided wave active sensing of complex structures. Three major modeling challenges are considered: material anisotropy with damping effects, nonlinear interactions between guided waves and structural damage, as well as geometric complexity of waveguides. To demonstrate LISA's prowess in addressing such challenges, carefully designed numerical case studies are presented. First, guided wave propagation and attenuation in carbon fiber composite panels are simulated. The numerical results are compared with experimental measurements obtained from scanning laser Doppler vibrometry (SLDV) to illustrate LISA's capability in modeling damped wave propagation in anisotropic medium. Second, nonlinear interactions between guided waves and structural damage are modeled by integrating contact dynamics into the LISA formulations. Comparison with commercial finite element software reveals that LISA can accurately simulate nonlinear ultrasonics but with much higher efficiency. Finally, guided wave propagation in geometrically complex waveguides is studied. The numerical example of multimodal guided wave propagation in a rail track structure with a fatigue crack is presented, demonstrating LISA's versatility to model complex waveguides and arbitrary damage profiles. This article serves as a comprehensive, systematic showcase of LISA's superb capability for efficient modeling of transient dynamic guided wave phenomena in structural health monitoring (SHM).
Subject
Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献