Finite Element Study on Chip Formation and Force Response in Two-Dimensional Orthogonal Cutting of Rock

Author:

Che Demeng1,Han Peidong1,Peng Bo1,Ehmann Kornel F.1

Affiliation:

1. Northwestern University, Evanston, IL

Abstract

The understanding of the rock-cutter interaction is essential for efficient rock cutting/drilling performed with polycrystalline diamond compact (PDC) cutters in petroleum engineering and gas exploration. Finite element modeling of the rock cutting process still remains a challenge due to the complex material properties of rock, rock fracture and chip formation phenomena and large force oscillations during the dominant brittle cutting mode. A finite element study was conducted to investigate the chip formation and force responses in two-dimensional orthogonal cutting of rock. The Drucker-Prager model that incorporates a simple shear strain failure criterion was exploited to simulate the interactions between the rock and the cutter. A fully instrumented rock cutting testbed was developed to enable the measurements of the three orthogonal force components and of the uni-axial acceleration in the cutting direction along rectilinear tool-paths to evaluate the simulation results. The chip formation phenomena and force response predictions derived by the FEM simulations were in good agreement with the experimental tests.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3