Stall Inception in a High-Speed Centrifugal Compressor During Speed Transients

Author:

Lou Fangyuan1,Fabian John C.1,Key Nicole L.2

Affiliation:

1. Department of Mechanical Engineering, Purdue University, 500 Allison Road, West Lafayette, IN 47907 e-mail:

2. Professor Department of Mechanical Engineering, Purdue University, 500 Allison Road, West Lafayette, IN 47907 e-mail:

Abstract

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the single stage centrifugal compressor (SSCC) facility at Purdue University and include speed transients from subidle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge (LE) and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one-third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. Review-Axial Compressor Stall Phenomena;ASME J. Fluids Eng.,1980

2. Spike-Type Compressor Stall Inception, Detection, and Control;Annu. Rev. Fluid Mech.,2010

3. Stall, Surge, and 75 Years of Research;ASME J. Turbomach.,2016

4. An Investigation of Backflow Phenomenon in Centrifugal Compressors,1945

5. Compressor Surge and Stall Propagation,1955

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3