High Frequency Analysis of a Point-Coupled Parallel Plate System

Author:

Culver Dean R.1,Dowell Earl H.1

Affiliation:

1. Aeroelasticity Laboratory, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27705 e-mail:

Abstract

The root-mean-square (RMS) response of various points in a system comprised of two parallel plates coupled at a point undergoing high frequency, broadband transverse point excitation of one component is considered. Through this prototypical example, asymptotic modal analysis (AMA) is extended to two coupled continuous dynamical systems. It is shown that different points on the plates respond with different RMS magnitudes depending on their spatial relationship to the excitation or coupling points in the system. The ability of AMA to accurately compute the RMS response of these points (namely, the excitation point, the coupling points, and the hot lines through the excitation or coupling points) in the system is shown. The behavior of three representative prototypical configurations of the parallel plate system considered is: two similar plates (in both geometry and modal density), two plates with similar modal density but different geometry, and two plates with similar geometry but different modal density. After examining the error between reduced modal methods (such as AMA) to classical modal analysis (CMA), it is determined that these several methods are valid for each of these scenarios. The data from the various methods will also be useful in evaluating the accuracy of other methods including statistical energy analysis (SEA).

Funder

Army Research Office

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic Modal Analysis ofCoupled Systems;Asymptotic Modal Analysis of Structural and Acoustical Systems;2021

2. Asymptotic Modal Analysis of Structural and Acoustical Systems;Synthesis Lectures on Mechanical Engineering;2020-11-03

3. On modal cross-coupling in the asymptotic modal limit;Journal of Sound and Vibration;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3