In-Plane Vibration Modes of Arbitrarily Thick Disks

Author:

Tzou K. I.1,Wickert J. A.1,Akay A.1

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

The three-dimensional vibration of an arbitrarily thick annular disk is investigated for two classes of boundary conditions: all surfaces traction-free, and all free except for the clamped inner radius. These two models represent limiting cases of such common engineering components as automotive and aircraft disk brakes, for which existing models focus on out-of-plane bending vibration. For a disk of significant thickness, vibration modes in which motion occurs within the disk’s equilibrium plane can play a substantial role in-setting its dynamic response. Laboratory experiments demonstrate that in-plane modes exist at frequencies comparable to those of out-of-plane bending even for thickness-to-diameter ratios as small as 10−1. The equations for three-dimensional motion are discretized through the Ritz technique, yielding natural frequencies and mode shapes for coupled axial, radial, and circumferential deformations. This treatment is applicable to “disks” of arbitrary dimension, and encompasses classical models for plates, bars, cylinders, rings, and shells. The solutions so obtained converge in the limiting cases to the values expected from the classical theories, and to ones that account for shear deformation and rotary inertia. The three-dimensional model demonstrates that for geometries within the technologically-important range, the natural frequencies of certain in- and out-of-plane modes can be close to one another, or even identically repeated.

Publisher

ASME International

Subject

General Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3