Effect of RIBS/FINS and Aspect Ratio on Flow Boiling Characteristics in Conventional Channels

Author:

Madan K.1,Sathyabhama A.2

Affiliation:

1. RNS Institute of Technology Department of Mechanical Engineering, , Bangalore, Karnataka 560098 , India

2. National Institute of Technology Department of Mechanical Engineering, , Mangalore, Karnataka 575025 , India

Abstract

Abstract In this work, experiments are conducted with conventional rectangular channels of two different aspect ratios (AR = w/d) for the horizontal boiling flow conditions at atmospheric pressure. Distilled water was used as the working substance. The heat transfer coefficients (HTC) were measured for mass fluxes and heat fluxes ranging from 85.94 kg/m2-s to 343.77 kg/m2-s and 10 kW/m2 to 100 kW/m2, respectively, and at inlet subcooled temperatures of 303 K, 313 K, and 323 K. Visualization of the boiling phenomenon was done using a high-speed camera for the two channels under similar conditions. The results show that the AR has a dominant effect on the HTC. At low heat flux values, higher HTC was noticed for the channel of higher AR (AR = 1.25) whereas, at high heat flux conditions, the HTC is higher for the channel of lower AR (AR = 0.2). With an increase in inlet subcooled temperature, the HTC decreased for both channels due to increased thermal boundary layer thickness and reduced bubble formation. Further, the channel of AR = 1.25 with ribs/fins performed better than the smooth channel due to the high bubble nucleation rate.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3