Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient

Author:

Al Dabagh A. M.1,Andrews G. E.1,Abdul Husain R. A. A.1,Husain C. I.1,Nazari A.1,Wu J.1

Affiliation:

1. Department of Fuel and Energy, The University of Leeds, Leeds, United Kingdom

Abstract

Measurements of the overall heat transfer coefficient within an impingement/effusion cooled wall are presented. The FLUENT CFD computer code has been applied to the internal aerodynamics to demonstrate the importance of internal recirculation in the impingement gap. This generates a convective heat transfer to the impingement jet. Measurements of this heat transfer plate coefficient are presented that show it to be approximately half of the impingement/effusion heat transfer coefficient. The influence of the relative pressure loss or X/D between the impingement and effusion walls was investigated, for an effusion X/D of 4.67 and a Z of 8 mm, and shown to be only significant at high G where a reduction in h of 20 percent occurred. Increasing the number of holes N in the impingement/effusion array at a constant Z of 8 mm reduced h by 20 percent, mainly due to the higher Z/D for the smaller holes at high N. Reduced numbers of impingement holes relative to the effusion holes, in a ratio of 1 to 4, were shown to have a small influence on h with a maximum reduction in h of 20 percent at high G and a negligible effect at low G.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3