Power-Law Fluid Flow Passing Two Square Cylinders in Tandem Arrangement

Author:

Ehsan Izadpanah1,Mohammad Sefid,Mohammad Reza Nazari,Ali Jafarizade2,Sharifi Tashnizi Ebrahim3

Affiliation:

1. e-mail:

2. Department of Mechanical Engineering, Yazd University, Yazd 89195-741, Iran

3. Department of Industrial and Mechanical Engineering, Tafresh University, Tafresh 39518-79611, Iran

Abstract

Two-dimensional laminar flow of a power-law fluid passing two square cylinders in a tandem arrangement is numerically investigated in the ranges of 1< Re< 200 and 1 ≤ G ≤ 9. The fluid viscosity power-law index lies in the range 0.5 ≤ n ≤ 1.8, which covers shear-thinning, Newtonian and shear-thickening fluids. A finite volume code based on the SIMPLEC algorithm with nonstaggered grid is used. In order to discretize the convective and diffusive terms, the third order QUICK and the second-order central difference scheme are used, respectively. The influence of the power-law index, Reynolds number and gap ratio on the drag coefficient, Strouhal number and streamlines are investigated, and the results are compared with other studies in the literature to validate the methodology. The effect of the time integration scheme on accuracy and computational time is also analyzed. In the ranges of Reynolds number and power-law index studied here, vortex shedding is known to occur for square cylinders in tandem. This study represents the first systematic investigation of this phenomenon for non-Newtonian fluids in the open literature. In comparison to Newtonian fluids, it is found that the onset of leading edge separation occurs at lower Reynolds number for shear-thinning fluids and is delayed to larger values for shear-thickening fluids.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Numerical Simulation of Flow Around Rectangular Cylinders;J. Wind Eng. Ind. Aerodyn.,1990

2. Johnson, S. A., Thompson, M. C., and Hourigan, K., 2001, “Flow Past Elliptical Cylinders at Low Reynolds Numbers,” Proc. 14th Australasian Fluid Mechanics Conference, Adelaide University, South Australia, Dec. 9–14, pp. 343–346.

3. Vortex Shedding in Cylinder Flow of Shear-Thinning Fluids I. Identification and Demarcation of Flow Regimes;J. Non-Newtonian Fluid Mech.,2003

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3