Research on Wave Mode Conversion of Curved Beam Structures by the Wave Approach

Author:

Xiuchang Huang1,Hongxing Hua2,Yu Wang,Zhipeng Du3

Affiliation:

1. e-mail:

2. Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, PRC 200240

3. Naval Research Center, Beijing, PRC 100073

Abstract

A general wave approach for the vibration analysis of curved beam structures is presented. The analysis is based on wave propagation, transmission, and reflection, including the effects of both propagating and decaying near-field wave components. A matrix formulation is used that offers a systematic and concise method for tackling free and forced vibrations of complex curved beam structures. To illustrate the effectiveness of the approach, several numerical examples are presented. The predictions made using the wave approach are shown to be in excellent agreement with a conventional finite element analysis, with the advantage of reduced computational costs and good conditioning number of the characteristic equation. The developed wave approach is applied to investigate the free vibration, vibration transmission, and power flow of built-up structures consisting of curved beams, straight beams, and masses, with the aim for designing vibration isolation structure with high attenuation ability. Wave reflection and transmission in the infinite curved beam structure, as well as vibration and energy transmission in coupled finite curved beam structure are investigated. Numerical results show that wave mode conversion takes place for the reflected and transmitted wave propagating through a curved beam, and the power flow in the coupled curved beam structure shows energy attenuation and conversion by curved beam and the discontinuities. The investigation will shed some light on the designing of curved beam structures.

Publisher

ASME International

Subject

General Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3