Effect of Reynolds Number, Hole Patterns, and Target Plate Thickness on the Cooling Performance of an Impinging Jet Array—Part II: Conjugate Heat Transfer Results and Optimization

Author:

Li Weihong1,Yang Li2,Li Xueying1,Ren Jing1,Jiang Hongde3

Affiliation:

1. Department of Thermal Engineering, Gas Turbine Institute, Tsinghua University, Beijing 100084, China e-mail:

2. Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15213

3. Department of Thermal Engineering, Gas Turbine Institute, Tsinghua University, Beijing 100084, China

Abstract

This study comprehensively illustrates the effect of Reynolds number, hole spacing, nozzle-to-target distance, and target plate thickness on the conjugate heat transfer (CHT) performance of an impinging jet array. Test models are composed of a specific thermal-conductivity material which exerts a matched model Biot number to that of engine condition. High-resolution temperature measurements are conducted on the impinging-target plate utilizing steady liquid crystal (SLC) with Reynolds numbers ranging from 5000 to 27,500. Different streamwise and spanwise jet-to-jet spacing (i.e., X/D and Y/D: 4–8), nozzle-to-target plate distance (Z/D: 0.75–3), and target plate thickness (t/D: 0.75–2.75) are employed to compose a total of 108 different geometries. Experimental measured temperature is utilized as boundary conditions to conduct finite element simulation. Local and averaged nondimensional temperature and averaged temperature uniformity of target plate “hot side” are obtained. Optimum hole spacing arrangements, impingement distance, and target plate thickness are pointed out to minimize hot side temperature, amount of cooling air and to maximize temperature uniformity. Also included are 2D predictions with different convective boundary conditions, i.e., local 2D distribution and row-averaged heat transfer coefficients (HTCs), to estimate the accuracy of temperature prediction in comparison with the conjugate results.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3