Fabrication and Modeling of Dynamic Multipolymer Nanofibrous Scaffolds

Author:

Baker Brendon M.1,Nerurkar Nandan L.2,Burdick Jason A.3,Elliott Dawn M.1,Mauck Robert L.1

Affiliation:

1. Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104

2. Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104

3. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Aligned nanofibrous scaffolds hold tremendous potential for the engineering of dense connective tissues. These biomimetic micropatterns direct organized cell-mediated matrix deposition and can be tuned to possess nonlinear and anisotropic mechanical properties. For these scaffolds to function in vivo, however, they must either recapitulate the full dynamic mechanical range of the native tissue upon implantation or must foster cell infiltration and matrix deposition so as to enable construct maturation to meet these criteria. In our recent studies, we noted that cell infiltration into dense aligned structures is limited but could be expedited via the inclusion of a distinct rapidly eroding sacrificial component. In the present study, we sought to further the fabrication of dynamic nanofibrous constructs by combining multiple-fiber populations, each with distinct mechanical characteristics, into a single composite nanofibrous scaffold. Toward this goal, we developed a novel method for the generation of aligned electrospun composites containing rapidly eroding (PEO), moderately degradable (PLGA and PCL/PLGA), and slowly degrading (PCL) fiber populations. We evaluated the mechanical properties of these composites upon formation and with degradation in a physiologic environment. Furthermore, we employed a hyperelastic constrained-mixture model to capture the nonlinear and time-dependent properties of these scaffolds when formed as single-fiber populations or in multipolymer composites. After validating this model, we demonstrated that by carefully selecting fiber populations with differing mechanical properties and altering the relative fraction of each, a wide range of mechanical properties (and degradation characteristics) can be achieved. This advance allows for the rational design of nanofibrous scaffolds to match native tissue properties and will significantly enhance our ability to fabricate replacements for load-bearing tissues of the musculoskeletal system.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3