Nano Magnesium Silicate Hydroxide as Synergistic Lubricant Additive With Micro Carbon Sphere for Enhanced Tribological Properties

Author:

Gao Rongqin1,Chang Qiuying1,Lichun Hao2,He Yang3

Affiliation:

1. Beijing Jiaotong University School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China

2. Sinopec Research Institute of Petroleum Processing, , 18 Xueyuan Road, Haidian District, Beijing 100083 , China

3. Research Institute of Petroleum Processing, Sinopec , 18 Xueyuan Road, Haidian District, Beijing 100083 , China

Abstract

Abstract In this study, the tribological properties of the mixture of nano magnesium silicate hydroxide (MSH) and micro carbon sphere (CS) are studied, and a superior synergistic anti-wear performance is exhibited under 600 N and 600 RPM. For determining the anti-wear mechanism, an easy two-step experimental method is innovatively used. It is proved that the decomposition of MSH is the key to exhibit the synergistic anti-wear effect with amorphous carbon (a-C). Results show that the H+ protons released by MSH decomposition can effectively convert Fe2O3 to Fe3O4 on worn surfaces. Besides, MSH also helps the formed a-C layer exist in low H content with stronger adhesion on the iron surface, and the detached H atoms from C–H further facilitate the reduction of Fe2O3. It is believed that the critical role of lamellate clay in synergy with a-C as a lubricant additive is determined, and a basis for the further anti-wear mechanism study of various a-C-modified clay composite is provided.

Funder

State Key Laboratory of Tribology

The Research Institute of Petroleum Processing, Sinopec

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3