Comparative Evaluation of Algorithms for Achieving Ultrapacked Thermal Greases: Microstructural Models and Effective Behavior

Author:

Achar P. L Sukshitha1,Liao Huanyu1,Subbarayan Ganesh1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906

Abstract

Abstract In this work, we develop and evaluate algorithms for generating ultrapacked microstructures of particles. Simulated microstructures reported in the literature rarely contain particle volume fractions greater than 60%. However, commercially available thermal greases appear to achieve volume fractions in the range of 60–80%. Therefore, to analyze the effectiveness of commercially available particle-filled thermal interface materials (TIM), there is a need to develop algorithms capable of generating ultrapacked microstructures. The particle packing problem is initially posed as a nonlinear programming problem, and formal optimization algorithms are applied to generate microstructures that are maximally packed. The packing efficiency in the simulated microstructure is dependent on the number of particles in the simulation cell; however, as the number of particles increases, the packing simulation is computationally expensive. Here, the computational time to generate microstructures with large number of particles is systematically evaluated first using optimization algorithms. The algorithms include the penalty function methods, best-in-class sequential quadratic programming method, matrix-less conjugate gradient method as well as the augmented Lagrangian method. Heuristic algorithms are next evaluated to achieve computationally efficient packing. The evaluated heuristic algorithms are mainly based on the drop-fall-shake (DFS) method, but modified to more effectively simulate the mixing process in commercial planetary mixers. With the developed procedures, representative volume elements (RVE) with volume fraction as high as 74% are demonstrated. The simulated microstructures are analyzed using our previously developed random network model to estimate the effective thermal and mechanical behavior given a particle arrangement.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Thermal Interface Materials: Historical Perspective, Status, and Future Directions;Proc. IEEE,2006

2. Thermal Contact Conductance of Selected Polymeric Materials;J. Thermophys. Heat Transfer,1996

3. Thermal Contact Conductance of Adhesives for Microelectronic Systems;J. Thermophys. Heat Transfer,1997

4. Modeling and Measurement of Pressure Dependent Junction-Spreader Thermal Resistance for Integrated Circuits;ASME-Publications-Htd,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Procedure for Efficient Generation and Behavioral Evaluation of Ultra‐Packed Ellipsoidal Particle Systems;International Journal for Numerical Methods in Engineering;2021-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3