Characterization of a Superheated Water Jet Released Into Water Using Proper Orthogonal Decomposition Method

Author:

Sinha Avick1,Chauhan Rajesh O.1,Balasubramanian Sridhar1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India e-mail:

Abstract

The external characteristics of a superheated water jet released into water at ambient conditions are dominated by the vapor bubble formation, which results in an unsteady flow dynamics. This hinders the use of classical methods to assess the mean flow and the turbulence characteristics. Here, the proper orthogonal decomposition (POD) technique was employed on the velocity measurements obtained using particle image velocimetry (PIV) to quantify the external characteristics of a superheated water jet released into water. This was done at three different inlet pressure ratios. From the energy modes obtained using the POD technique, it was observed that the first mode well represents the mean flow, while subsequent higher modes show the fluctuating nature. The phase-averaged properties were calculated by considering only the first mode. Unlike a canonical jet, the maximum value of the mean centerline velocity for a superheated jet occurs far downstream from the nozzle, at x/D ≈ 15, due to the thermal nonequilibrium in the jet attributed to the formation of vapor bubbles. The turbulent kinetic energy (TKE), size of the coherent structures (CS), and swirling strength showed a nonmonotonic decrease in the downstream direction, indicating that the vapor formation has significant influence on the jet dynamics. The novel aspect of this work is the use of POD technique for phase averaging, using which dynamics of a superheated jet have been quantified. The distribution of vapor bubbles in the flow field was also measured using the Shadowgraphy technique to substantiate the above observations.

Funder

"Department of Science and Technology, Ministry of Science and Technology"

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3