Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot

Author:

Huang Chenhui1,Xie Fugui2,Liu Xin-Jun2,Meng Qizhi1

Affiliation:

1. The State Key Laboratory of Tribology, Department of Mechanical Engineering (DME), Tsinghua University, Beijing 100084, China

2. The State Key Laboratory of Tribology, Department of Mechanical Engineering (DME); Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China

Abstract

Abstract This paper presents the kinematic calibration of a four-degrees-of-freedom (4DOF) high-speed parallel robot. In order to improve the calibration effect by decreasing the influence of the unobservable disturbance variables introduced by error measurement, a measurement configuration optimization method is proposed. Configurations are iteratively selected inside the workspace by a searching algorithm, then the selection results are evaluated through an index associated with the condition number of the identification Jacobian matrix; finally, the number of optimized configurations is determined. Since the selection algorithm has been shown to be sensitive to local minima, a meta-heuristic method has been applied to decrease this sensibility. To verify the effectiveness of the algorithm and kinematic calibration, computation validations, pose error estimations, and experiments are performed. The results show that the identification accuracy and calibration effect can be significantly improved by using the optimized configurations.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3