Characterization of Lead-Free Solders in Flip Chip Joints

Author:

Wiese S.1,Meusel E.1

Affiliation:

1. Dresden University of Technology, Semiconductor & Microsystems Technology Laboratory, TU Dresden, IHM, D-01062 Dresden, Germany

Abstract

The creep and crack propagation behavior of SnAg3.5, SnAg4Cu0.5, and SnPb37 (as reference) was investigated on flip chip solder joints V=1×10−12 m3. The test specimen consisted of two silicon chips (3.3×3.3 mm), bonded to each other by four flip chip joints (one on each corner). The steady-state creep rate was determined by reversible constant load shear tests. The stress exponents were n=11 for Sn96.5Ag3.5, n=18 for Sn95.5Ag4Cu0.5, and n=2 for Sn63Pb37. The apparent activation energies were Q=79.8 kJ/mol for Sn96.5Ag3.5, Q=83.1 kJ/mol for Sn95.5Ag4Cu0.5, and Q=44.9 kJ/mol for Sn63Pb37. Microstructural analyses indicated that small precipitates of Ag3Sn and η-Cu6Sn5 intermetallics are responsible for the high values for n and Q that were found for the Sn96.5Ag3.5 and Sn95.5Ag4Cu0.5. The crack growth rate was determined by isothermal fatigue experiments on Sn63Pb37 and Sn95.5Ag4Cu0.5 flip chip solder joints. The flip chip solder joints were loaded with strain amplitudes ranging from Δε=0.3–4% and test frequencies f=0.0001-100 Hz at a temperature of T=300 K.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FE-Analysis of Deformation State during a Four-Point Bending Experiment on Soldered MLCCs;2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2023-04-17

2. Numerical analysis and thermal fatigue life prediction of solder layer in a SiC-IGBT power module;Frattura ed Integrità Strutturale;2020-12-28

3. Back Propagation Neural Network in Predicting the Thermal Fatigue Life of Microelectronic Chips;Informacije MIDEM - Journal of Microelectronics, Electronic Components and Materials;2020-04-20

4. Thermal and mechanical tests for packages and materials;Modeling, Analysis, Design, and Tests for Electronics Packaging beyond Moore;2020

5. Thermal Fatigue Evaluation Model of a Microelectronic Chip in Terms of Interfacial Singularity;Journal of Electronic Packaging;2019-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3